AA6-5 and 6-6

Name ______

Finding Roots of Higher-Degree Polynomials

Check for Understanding:

1. $P(x) = x^3 - 3x^2 - 7x + 9$ a. Divide $P(x) = x^3 - 3x^2 - 7x + 9$ by (x-5) b. Find P(5)

- c. Write the partially factored form: P(x) =
- d. Is (5,0) a root of P(x)?
- 2. $P(x) = x^3 + 6x^2 + 5x 6$. Is (-2,0) a root of P(x)?
 - a. Divide

b. Find P(-2)

<u>u.</u> 011146		_

- c. Write the partially factored form: P(x) =
- d. Is (-2,0) a root of P(x)?

Practice C-Level

Given a factor of the polynomial, rewrite it in fully factored form.

			•		
3.	$y = x^3 + 3x^2 - 28x - 60$	Factor: $x+2$	4.	$y = 4x^3 + 24x^2 - 31x - 21$	Factor: $x+7$

Partially factored:

Partially factored:	
---------------------	--

Fully factored:	Fully factored:
Roots:	Roots:

Use both methods to answer each question. Then, write the equation in partially factored form.

5) Determine if (3,0) is a root of $P(x) = 2x^3 - 7x^2 + 6x - 3$

6) Determine if (x+2) is a factor of $f(x) = x^3 - 5x^2 + 7x - 2$

B-Level

7) .Rewrite the polynomial it in fully factored form.

$$y = x^4 + x^3 - 3x^2 - x + 2$$
 Factor: $(x-1)^2$

Partially factored:

Partially factored:

Fully factored: _____ Roots: _____ 8). Determine if (x-1) is a factor of $P(x) = 4x^3 - 5x + 6$

9). Determine if there is a root of f(x) at x = -1. $f(x) = 3x^5 - 4x^4 - 2x^3 + 5x^2 + x - 1$.

10). Determine if there is a root at x = -2 of $P(x) = x^4 + 3x^3 - 9x - 10$